博客
关于我
flink读取hive表数据的一些现象
阅读量:763 次
发布时间:2019-03-23

本文共 384 字,大约阅读时间需要 1 分钟。

一个可能的解释是,配置文件中的executionplanner设置直接影响了Flink如何处理数据。默认的execution设置为streaming,这适用于处理实时数据流,但在某些情况下,批量处理可能提供了更好的性能或数据一致性。与此同时,planner设置到batch说明Flink使用批量处理模式。

用户提到的现象显示,无论是创建Hive表还是Flink流表,由于type: streamingbatch都能正常工作,说明它们在不同的数据量和处理需求下都可以有效使用。特别是在处理外部日志文件时,批量处理能完全读取数据,而流处理则可能遇到读取逻辑上的问题。这可能是因为批处理模式更适合处理完整的、离散的数据集,而流处理则需要数据持续生成。

通过这些分析,可以得出配置文件中的execution设置直接反映了Flink处理数据的方式,从而影响了查询和处理性能。

转载地址:http://eykkk.baihongyu.com/

你可能感兴趣的文章
Objective-C实现图像移动(附完整源码)
查看>>
Objective-C实现图层混合算法(附完整源码)
查看>>
Objective-C实现图形着色算法(附完整源码)
查看>>
Objective-C实现图片dilation operation扩张操作算法(附完整源码)
查看>>
Objective-C实现图片erosion operation侵蚀操作算法(附完整源码)
查看>>
Objective-C实现图片的放大缩小(附完整源码)
查看>>
Objective-C实现图片腐蚀(附完整源码)
查看>>
Objective-C实现图片膨胀(附完整源码)
查看>>
Objective-C实现图片转化为 ASCII图(附完整源码)
查看>>
Objective-C实现图的邻接矩阵(附完整源码)
查看>>
Objective-C实现图结构(附完整源码)
查看>>
Objective-C实现圆球的表面积和体积(附完整源码)
查看>>
Objective-C实现在Regex的帮助下检查字谜算法(附完整源码)
查看>>
Objective-C实现在指定区间 [a, b] 中找到函数的实根,其中 f(a)*f(b) < 0算法(附完整源码)
查看>>
Objective-C实现均值滤波(附完整源码)
查看>>
Objective-C实现埃拉托斯特尼筛法算法(附完整源码)
查看>>
Objective-C实现域名解析(附完整源码)
查看>>
Objective-C实现域名转IP(附完整源码)
查看>>
Objective-C实现培根密码算法(附完整源码)
查看>>
Objective-C实现基于 LIFO的堆栈算法(附完整源码)
查看>>